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Biased information about the payoffs received by others can drive
innovation, risk taking, and investment booms. We study this cul-
tural phenomenon using a model based on two premises. The
first is a tendency for large successes, and the actions that lead
to them, to be more salient to onlookers than small successes
or failures. The second premise is selection neglect—the failure
of observers to adjust for biased observation. In our model, each
firm in sequence chooses to adopt or to reject a project that has
two possible payoffs, one positive and one negative. The proba-
bility of success is higher in the high state of the world than in
the low state. Each firm observes the payoffs received by past
adopters before making its decision, but there is a chance that
an adopter’s outcome will be censored, especially if the payoff
was negative. Failure to account for biased censorship causes
firms to become overly optimistic, leading to irrational booms in
adoption. Booms may eventually collapse, or may last forever.
We describe these effects as a form of cultural evolution, with
adoption or rejection viewed as traits transmitted between firms.
Evolution here is driven not only by differential copying of suc-
cessful traits, but also by cognitive reasoning about which traits
are more likely to succeed—quantified using the Price Equation
to decompose the effects of mutation pressure and evolutionary
selection. This account provides an explanation for investment
booms, merger and initial public offering waves, and waves of
technological innovation.

cultural evolution | evolutionary finance | social finance | Price Equation |
mutation pressure

We study how biases in social transmission of information
about the actions and payoffs of others induce innovation

and risk taking by firms. Our model is based on two premises.
The first is the tendency for large successes, and the actions that
led to them, to be more visible and salient to others than failures.
For example, if 999 out of 1,000 small start-ups fail completely,
and one grows to become as large and successful as Google, each
of the failures, being small, is seldom noticed and remembered,
whereas discussion of the huge success becomes ubiquitous.
Successes tend to be more visible because they are associated
with extensive continuing economic transactions, which garner
attention, whereas failures tend to vanish.

The second premise is the psychological phenomenon of selec-
tion neglect, the failure of observers to adjust for bias in the
process that generates the data they observe.∗ We apply these
two premises to business initiatives, such as creating a start-up
firm, undertaking a corporate “moonshot” or “sure bet” invest-
ment project, or making a large acquisition. We show that this
evolutionary process can result in boom and bust dynamics, con-
sistent with merger and initial public offering (IPO) waves, and
sudden waves of innovative technological activity.

In our setting, firms in sequence decide whether or not to
undertake (adopt or reject) a risky project, based on observa-
tion of the actions and payoffs of previous firms. If the project is
adopted, it yields one of two possible payoffs—a positive success
payoff or a negative failure payoff. We assume biased censor-
ship—a higher probability of observing successful projects and

their outcomes than failed ones. Owing to selection neglect, a
manager will have a biased assessment of the prospects of the
project. We analyze how these factors shape boom/bust dynam-
ics and long-term survival of different behaviors: adoption versus
rejection of projects with different characteristics. We consider
these dynamics in the context of cultural evolution of financial
traits in a population of firms.

The probability of project success is higher in the high state of
the world than in the low state, such that the project is profitable
in expectation only in the high state. Each firm observes pay-
off outcomes of predecessors, but there is some probability that
any given adopter’s payoff is censored. If observers were ratio-
nal, then in the long run, firms would adopt only if the state of
the world were high. However, owing to selection neglect, later
firms tend to become overly optimistic about the state of the
world, so there can be a positive probability that all firms adopt
in the low state. In this state, biased censorship can also exacer-
bate boom/bust dynamics, wherein a long string of adopts occurs
before ultimate collapse.

We view adoption or rejection of the risky project as a cultural
trait transmitted between firms. We employ the Price Equa-
tion to decompose this trait’s evolution into a component due
to natural selection and a component due to mutation. Surpris-
ingly, despite the central role of selection bias in the evolution of
project choice in the model, the predominant source of cultural
change in our context is not natural selection, but, rather, muta-
tion pressure. The importance of mutation during transmission
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differs sharply from cultural evolutionary models with biased imi-
tation, in which there is only natural selection. This feature of our
analysis highlights the role of cognitive reasoning in the cultural
evolution of risk-taking behaviors.

Our approach differs from a literature on entrepreneurship
that assumes that entrepreneurs are exogenously overoptimistic.
Beyond the conclusion of overadoption of projects, we derive
implications about boom/bust dynamics and a variety of dis-
tinctive comparative statics predictions. More broadly, our anal-
ysis suggests that it is important to account for the psychol-
ogy of attention and social interaction rather than solely of
overconfidence.

We are not the first to examine sequential social learning. For
example, in the models of refs. 4 and 5, rational agents update
their beliefs by observing the actions of predecessors. Owing
to so-called information cascades, decisions are often mistaken,
and social outcomes are fragile. The current paper differs from
prior work by examining social learning from past payoffs as well
as actions, the possibility of biased censorship of past observa-
tions, and imperfect rationality in the form of neglect of this
selection bias. These features have distinctive consequences for
boom–bust dynamics in investment choice.

We are also not the first to examine selection bias and learning
by firms. Denrell (6) also examines a setting in which observers
neglect selection bias in the information they observe about
firms. As in our model, failure is less likely to be observed
than success. Denrell’s focus is on how this biases learning
about the traits that are characteristic of the upper tail of
successful firms, which he argues will disproportionately con-
sist of variance-increasing strategies. So Denrell concludes that
selection bias will cause the spread of risky and unreliable
management practices.

Our study differs in several ways. First, we focus on beliefs
about the benefits of project adoption rather than about general
managerial practices. Second, we allow for sequential choices
and selection bias. In other words, we model explicitly how
neglect of selection bias affects an arbitrary observer’s behavior,
not just beliefs; and how the observer, in turn, becomes the tar-
get of observation for the next agent, and so forth. This allows
us to study the implications of selection bias for the dynam-
ics of investment booms and collapses. Third, our modeling
allows us to analyze the evolutionary process by which behav-
ioral traits are transmitted across agents in terms of selection and
mutation pressure. Fourth, Denrell’s focus is on how differences
in variance biases choices, whereas we analyze payoff asym-
metry and show that greater moonshotness promotes project
overadoption.

Han et al. (7) examine a setting in which stock-market
investors randomly meet to discuss their strategies, and the prob-
ability that an investor reports the investor’s return performance
is increasing in return. An investor has an exogenous probabil-
ity of copying another investor’s strategy that is increasing with
reported return, if the investor receives a report. As a result,
high-variance investing strategies spread through the popula-
tion. Our focus here is on project choices by firms that update
beliefs in a quasi-Bayesian fashion, based on sequential obser-
vation of a history of past payoffs by other firms. In contrast,
in ref. 7, investors are randomly drawn to meet, and message
receivers have an exogenous switching probability based upon
the single observation during that meeting. Our study also dif-
fers in deriving boom/bust dynamics, comparative statics about
moonshotness, and decomposition of outcomes into evolutionary
components.

The Basic Setting
Consider a setting in which agents in sequence choose between
two actions, adopt or reject an investment project. Each agent
learns about the state of the world from the payoff experiences

of predecessors (8–10). These assumptions fit many practical
applications in which firms’ investment choices are distributed
over time, so that later firms can observe the decisions and
performances of predecessors.

Reject always generates a payoff of zero, whereas adopting
generates one of two possible payoffs, which are distributed
independently across firms, conditional upon state. Let the pos-
sible actions for the nth agent in the sequence, denoted In , be
an =A,R (Adopt or Reject). When an agent rejects, the pay-
off is zero. The binary state of the world is θ=H ,L, with prior
probability q of state H . In each state, there are two possible net
payoffs to adoption, v =V > 0 or v =−1. Project success has
probability p> 1/2 in state H and 1− p in state L. Therefore,
high payoff is a symmetric binary signal about state, with payoff
probabilities shown in Table 1.

We assume that when indifferent, an agent rejects, and we
impose parameter constraints such that adopting is, in expecta-
tion, strictly profitable in state H and unprofitable in state L. We
let the expected profit from adopting conditional on state be Πθ ,

ΠH ≡E [v |θ=H ] = pV − (1− p)> 0

ΠL≡E [v |θ=L] = (1− p)V − p< 0, [1]

which together imply that 1−p
p
<V < p

1−p
.

Agents maximize expected profits conditional on their infor-
mation, which derives from observing past actions and payoffs.
To avoid the trivial outcome that all agents always reject, we
assume that the prior expected value of action A is positive,

E [v ] = q [pV − (1− p)] + (1− q)[(1− p)V − p]

= q(2p− 1)(V + 1) + (1− p)V − p> 0. [2]

This implies that the first agent, I1, adopts.

Full Observability of Past Payoffs
If at any point an agent Ii ’s belief about the state becomes suf-
ficiently pessimistic, Ii rejects the investment project, and Ii ’s
payoff of zero contains no information about state. Since Ii+1

has no additional information, Ii+1 also rejects, as do all later
agents. So in the stochastic process of actions and payoffs, the
action R is an absorbing outcome. With full observability of past
payoffs, there is a random walk on beliefs, as measured by the
log-likelihood ratio (LLR) between the two states, with a lower
absorbing barrier that produces long-run project rejection (see,
e.g., ref. 10).

Specifically, conditional on state, so long as agents adopt, the
belief follows a random walk with drift. Let di be the differ-
ence between the number of high-payoff realizations (V ) and
the number of low realizations (−1) observed by agent Ii (i.e.,
up to and including the payoff of Ii−1), where, by conven-
tion, d1 = 0. Since v realizations are conditionally independent
given state θ=H or L, a standard result for Bayesian updat-
ing with binary state and signals is that updated beliefs depend
only on the difference between the counts of the two types of
outcomes,

Table 1. Payoff probabilities

Payoff outcome (v)

State (θ) V −1

H p 1−p
L 1−p p
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λi ≡ log

(
P(H |di)
P(L|di)

)
= di log

(
p

1− p

)
+ log

(
q

1− q

)
. [3]

So the relevant payoff history from past adopts is fully sum-
marized by di . (Rejects generate a deterministic payoff, and
therefore are uninformative.)

The belief state in our model, as measured by the LLR λi ,
therefore behaves according to the standard Gambler’s Ruin
additive random walk. The LLR changes at each step by the
increment log(P(v|H )

P(v|L) ), which is positive when v =V and nega-
tive when v =−1, and which has the same absolute value in both
cases. In state θ=H , the probabilities of these increments are p
for v =V and 1− p for v =−1. In state L, the probabilities are
1− p for v =V and p for v =−1.

The lower absorbing barrier in this Gambler’s Ruin is the cut-
off on the LLR above which adoption has a positive expected
payoff. Intuitively, under the prior belief, an agent adopts, and
so bad news (di < 0) is required for an agent to reject. We can
calculate the continuous cutoff value d∗ above which an agent
Ii would be just willing to adopt by imposing the positive profit
condition

E [v |di ] =P(H |di)[pV − (1− p)] + (1−P(H |di))
× [(1− p)V − p] = 0. [4]

By Eqs. 1 and 3, the indifference cutoff on d is

d∗≡
log
(

p−(1−p)V
pV−(1−p)

)
− log

(
q

1−q

)
log
(

p
1−p

) . [5]

Since an indifferent agent rejects, the first reject occurs when di
reaches or crosses d∗, di ≤bd∗c. For example, if d∗=−1.1, the
first reject occurs when di =−2. The numerator of Eq. 5 is neg-
ative (see SI Appendix, section 2 for details), which implies that
d∗< 0. In summary, the count of past high minus low payoffs
follows a random walk with a lower absorbing barrier bd∗c< 0.

The model therefore endogenously generates a Gambler’s
Ruin random walk in beliefs. In general, for a random walk with
a lower absorbing barrier at zero and an up move probability
r ≤ 1/2, the probability of ultimate ruin starting from position
d0> 0 is one, and with r > 1/2, is

P(Ruin) =

(
1− r

r

)d0
, [6]

which is decreasing in d0 (11). Intuitively, unless the probabil-
ity of an up move exceeds that of a down move (r > 1/2), the
gambler will eventually wander below the barrier and go broke.
In contrast, if r > 1/2, the upward drift in the walk gives the
gambler a chance of exceeding the lower barrier forever.

The standard Gambler’s Ruin random walk is an equivalent
transformation of our model in which the absorbing barrier
bd∗c< 0 is increased to zero, and the starting position is accord-
ingly increased to d0 =−bd∗c. Here, the probability of an up
move corresponds to p> 1/2 or 1− p in the H or L state,
respectively. We therefore have:

Proposition 1. With observation of all past actions and payoffs:

1. In state L, with probability one, the project will eventually be
abandoned by an agent (and by all subsequent agents).

2. In state H , there is a strictly positive probability that all agents
will adopt the project.

The exact formula for the probability that all agents adopt in
state H is given in SI Appendix, section 4. The proof is also given
in SI Appendix.

The results are intuitive. If an arbitrarily large number of
agents were to adopt, beliefs would converge to virtual certainty
in state L, causing rejection. As for state H , either early bad
news makes adopt seem so bad that the reject barrier is crossed
(in which case, no further information is generated, so all subse-
quent agents reject), or else there is an infinite number of adopts,
so that in the long run, agents become highly confident of the
H state.

From a welfare perspective, a key property of the model is
underexploration. When an agent chooses A, the payoff out-
comes provide information about the state that is useful for
later agents. Each agent ignores this external benefit, so that,
from the viewpoint of social welfare, agents choose A too rarely.
Specifically, even if the expected private gain to adopting A is
slightly negative, from a social perspective, A should be adopted.
A similar form of underexploration arises in models of social
two-armed bandit problems (9).

Biased Censorship and Rational Updating
Suppose now that high-payoff outcomes are more likely to be
observed than low-payoff outcomes. Specifically, we assume that
a payoff of v =V is observed with probability δ≤ 1, whereas a
payoff of v =−1 is observed only with probability π≤ δ. So the
upside censorship probability is 1− δ≥ 0, and the downside cen-
sorship probability is 1−π≥ 0. We assume strict inequalities,
where the case of δ=π= 1 is a benchmark for comparison.

We call greater censorship of downside outcomes upside
salience, defined algebraically as the ratio β≡ δ/π. Intuitively,
projects that succeed are associated with a high scale of con-
tinuing economic transactions, which garners attention, whereas
projects that fail tend to vanish. Consistent with the example in
the introduction of 1,000 start-ups, one of which has a big suc-
cess, there is extensive evidence from psychology that rare events
are salient and tend to be overweighted (12) and, similarly, that
people disproportionately recall realizations with extreme pay-
offs (13). This motivates our assumption that β > 1, especially
for low q and large V .

We can think of censorship of observation of a firm’s project
outcome as meaning that the outcome is not reported conspicu-
ously in the media. So we assume that censorship of an agent is
universal: The agent’s payoff is either visible to all successors or
to none of them.† .

A related motivation for the assumption β > 1 is that managers
and firms have an incentive to disclose good news immediately,
and to defer the disclosure of bad news. If investors are not fully
attentive to these strategic incentives, then the withholding of
bad news about project payoffs will cause investors to process
high-payoff outcomes more often than low-payoff outcomes (14).

Let vj =V or −1 be the realized payoff outcome of agent Ij
if j adopts. Since I1 adopts, observation by rational I2 of I1’s
payoff updates I2’s belief about state H to beliefs that are inde-
pendent of π and δ (see SI Appendix, section 6 for details). This is
because, conditional on observation of a payoff, the greater cen-
sorship of low payoffs makes no difference for inferences. The
only information contained in the sheer fact of observation is that
the payoff is less likely to be−1. But conditional on a payoff that
is directly observed, this information is redundant.

In contrast, the absence of an observation of an earlier agent
contains useful information for agent Ii , as in the story in which
detective Sherlock Holmes draws a key inference from “the
dog that did not bark.” For example, if I2 does not observe I1,
then the rational inference is tilted toward state θ=L, since the

†As a result, agents cannot glean any private information from the action choices of
predecessors. This point is not relevant for our main analysis, since, in our setting
with imperfect rationality, agents do not even realize that there is any such indirect
information to be extracted.
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occurrence of no observation tends to comes from the payoff −1
(since π<δ). However, there is evidence that, in reality, finan-
cial decision makers and markets sometimes underreact to the
information implicit in event nonoccurrence (15).

Neglect of Payoff-Biased Censorship
What if agents neglect the fact that there is biased censorship of
the payoffs of past investment projects? We first consider how
neglect of censorship affects short-term and long-term dynamics
of project adoption. In Neglect of Payoff-Biased Censorship, we
examine basic comparative statics on long-run adoption. In Iden-
tifying Sources of Cultural Evolution using the Price Equation, we
examine the sources of cultural evolution toward adopt or reject
using the Price Equation.

Neglect of Biased Censorship and Adoption Dynamics. When agents
are unaware of censorship, if agent Ij observes j ′< j − 1 past
actions and payoffs, agent Ij mistakenly believes that he is the
(j ′+ 1)th agent in the decision queue. We expect that dispro-
portionate censorship of low payoffs will make agents overly
optimistic about project adoption.

We will show that the beliefs of an appropriate sequence of
agents follows a random walk with drift, with an absorbing bar-
rier that induces rejection. Consider the subsequence of the belief
sequence that removes all agents whose payoffs are censored.
This uncensored subsequence contains the beliefs of all agents
whose payoffs matter for later agents. We will see that the beliefs
(LLRs) of agents in this subsequence follow a random walk.

Let a B (for biased) superscript denote an imperfectly ratio-
nal expectation. A biased agent mistakenly fails to condition
on observation versus nonobservation of payoffs when forming
expectations. Let O21 denote the event that I2 observes I1. Then,
for I2 (see SI Appendix, section 3 for details),

PB (θ=H |O21, v1 =V ) =
PB (θ=H ,V1 =V )

PB (v1 =V )

=
1

1 + 1−q
q

1−p
p

PB (θ=H |O21, v1 =−1) =
PB (θ=H , v1 =−1)

PB (v1 =−1)

=
1

1 + 1−q
q

p
1−p

.

We see that the beliefs conditional on seeing V or −1 are the
same as for a rational agent, independent of noncensorship prob-
abilities δ and π. So neglecting the information implicit in the fact
that a payoff was observed does not affect conditional beliefs.

In contrast, neglect of the information implicit in the absence
of an observation crucially affects action dynamics and the evo-
lution of beliefs, because unlike a rational agent, an inattentive
agent does not draw inferences from censored observations.

When agents naively neglect nonobservation, they update
based on the observed difference between the numbers of high
and low payoffs, just as in the case with no censorship. Specifi-
cally, let j be the index for the subsequence, i.e., a count in order
of the uncensored agents. Let dj be the difference in the num-
ber of V and −1 outcomes through the (j − 1)th agent in this
subsequence. Then, Eq. 3 holds with i replaced with j .

However, neglect of censorship modifies the probabilities of
an up or down move in beliefs conditional on state in the LLR
walk. In the uncensored subsequence, the probabilities of an up
move and down move in the next step are constant over time. So
in the random walk for the uncensored subsequence, conditional
on state θ=H , the probabilities of an up move, pH∗, and of a
down move, 1− pH∗, are (see SI Appendix, section 3 for details)

pH∗=P(v1 =V |H ,O21) =
p

p + (1− p)/β
> p

1− pH∗=
1− p

1 + p(β− 1)
< 1− p, [7]

where the inequalities follow because upside salience β > 1. The
probability of an up move in the subsequence random walk
conditional upon state H is increased by upside salience.

Similarly, in the subsequence random walk, conditional on
state θ=L, the probabilities of an up move and a down move,
respectively, are

1− pL∗=
1− p

1− p + p/β
> 1− p

pL∗=
p

p +β(1− p)
< p, [8]

since β > 1.
There are two key differences in the evolution of beliefs from
the case of no censorship. First, we must characterize beliefs
for censored agents as well. These are determined trivially from
the beliefs in the uncensored subsequence. Any censored agent’s
belief is identical to the belief of the next uncensored agent, since
the next uncensored agent does not see intervening censored
payoffs. Second, the probability of an up move in the LLR walk is
higher with neglect of biased censorship. This effect can be arbi-
trarily large. As β becomes large (π≈ 0), both pH∗, 1− pL∗→ 1.
So with neglect of biased censorship, beliefs can tend to march
upward, even in the L state, where complete information would
inevitably lead to rational rejection.

We summarize the evolutionary dynamics of adoption under
biased censorship in the following proposition.

Proposition 2. Under biased censorship, if :

1. In state L:
a. (Weak upside salience) If β≤ p/(1− p), then with probability

one the project is eventually abandoned.
b. (Strong upside salience) If β > p/(1− p), then the probability

that all agents adopt is strictly between zero and one, and it is
increasing in δ and decreasing in π. Otherwise, the project is
eventually abandoned.

2. In state H , the probability that all agents adopt is strictly between
zero and one, and it is increasing in δ and decreasing in π.
Otherwise, the project it is eventually abandoned.

In sharp contrast with Proposition 1, owing to neglect of cen-
sorship of low payoffs, there is a positive probability that all
agents adopt, even when the project has negative expected value
(state L). Moreover, the chance that all agents adopt is greater
in state H than without censorship.

Let β̂≡ p/(1− p) be the cutoff value on upside salience, such
that with positive probability, agents adopt in the long run, even
in state L. Clearly, β̂ is increasing with p, the superiority in
the success rate in the high versus low state. When project suc-
cess is highly sensitive to state, greater relative selection bias
on the upside versus the downside is needed to induce long-run
adoption in state L.

Proposition 2 shows that the model generates boom dynam-
ics, with strings of adoption, even in state L. Owing to upside
salience, such booms occur more often when agents neglect
censorship. Such neglect causes irrational extra booms. Booms
may be followed by collapse, or they may be sustained perma-
nently. Adoption continues until (if ever) the preponderance of
uncensored evidence, in the form of low payoffs, favors reject.

In some realizations, there is no boom (a single adopt followed
by all reject). In others, there is a boom period followed by a col-
lapse (several or many adopts and then all reject). In other cases,
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there is a persistent boom (all adopt). In the L state, the boom
component of the boom/collapse pattern is mistaken relative to
full knowledge of state.

Since agents do not know the state, booms and busts do not, in
themselves, indicate bad decision making. Without censorship,
all decisions are rational, but such mistakes still occur with pos-
itive probability. However, when there is biased censorship and
selection neglect, there are irrational booms and busts. This is
illustrated in Fig. 1, which depicts realizations belief LLR over
time. Without censorship, after two Adopts, the Reject barrier
is reached, and all subsequent agents reject. In contrast, under
censorship, there is a temporary boom, until the late sequence of
negative payoffs brings about collapse. This must eventually hap-
pen in the L state if upside salience is sufficiently weak. Fig. 1,
Lower makes a similar comparison under a set of realizations
in which, under censorship, the boom takes longer to collapse.
Indeed, the boom may continue forever, even in state L, provided
upside salience is sufficiently strong.

Under selection neglect, the probability of an early string of
adopts is increased—there are adoption bubbles. Suppose, for
example, that there is relatively little censorship. By Proposi-
tion 2, with probability one, in the L state, eventually all agents
reject. So censorship causes extra booms that would not occur
were agents rational. If censorship is not too severe, these
booms later crash. If censorship is more severe, matters are
even worse—there are permanent mistaken booms.‡ The model
therefore offers an explanation for real investment booms and
busts (16), IPO waves and overoptimism (17–19), and value-
reducing merger waves (20, 21). This explanation differs from
some past explanations that require payoff externalities (22) or
shifts in investor sentiment (23). There are, of course, other
possible explanations as well.

Since key parameters of a model, such as β, can never be
estimated perfectly, it is important to know whether model
implications are robust to parameter variations. The qualitative
implications of Propositions 1 and 2 are robust to small variations
in β, except for the measure-zero set of critical values described
in the propositions.

Comparative Statics of Long-Run Adoption. How does the upside
payoff, the censorship probability, and the prior likelihood of
success affect the chance of eventual adoption? To address these
questions, in either state H or L, we analyze the partial deriva-
tives of the chance of persistent adoption with respect to model
parameters.

By Eq. 6, the long-run log rejection probability in the two states
(where for state L, we impose the condition that β > p/(1− p)
so that ruin is not assured) is

log(P(Ever Reject|θ)) =

−(bd∗c) log
(

1−p
βp

)
if θ=H

−(bd∗c) log
(

p
β(1−p)

)
if θ=L.

[9]

Since log(p/(1− p)) and log((1− p)/p) have opposite signs, it is
evident that all of the parameters, except perhaps p and β (which
reflects δ and π), have opposite directional effects on the long-
run reject probabilities.

We use a version of Eq. 9 that ignores the floor function as
a continuous approximation for the chance long-run rejection,
after substituting Eq. 5 for d∗. To derive comparative statics, let

‡The conclusion that booms last forever will not hold for some applications in which
payoffs are interdependent, in contrast with our model assumption. For example, if
firms undertake projects that are in competition with each other, then adoption by
early firms reduces the expected payoffs to later firms of adopting. In such a setting,
booms would eventually end, as firms started to experience lower and lower payoffs.

Fig. 1. Booms of project adoption, with and without biased censorship.
(Upper) The graph compares belief states of successive firms (x axis) in the
case of censorship (black) to the case of no censorship (gray), under a set
of payoff realizations, in which the boom eventually collapses. (Lower) The
graph makes a similar comparison under a set of realizations in which, under
censorship, the boom takes longer to collapse, or may never collapse. Red
payoffs correspond to censored outcomes.

RH and RL denote the log probabilities of ever rejecting in state
H or L:

RH ≡ log(P(Ever Reject|θ=H ))

RL≡ log(P(Ever Reject|θ=L)). [10]

We study the partial derivatives of RH and RL with respect to
model parameters, p, q , V , and β (or π and δ separately) in
regime with a positive chance of all agents adopting even in state
L (i.e., β > p/(1− p)).

The effect of increasing upside salience follows immedi-
ately from differentiating Eq. 9 with respect to β. This gives
∂RH

∂β
, ∂R

L

∂β
< 0. Since δ and π enter the reject probability expres-

sions only through the definition of β, we also immediately have
∂RH

∂δ
, ∂R

L

∂δ
< 0 and ∂RH

∂π
, ∂R

L

∂π
> 0. So as upside salience becomes

stronger (owing to either lower upside censorship or stronger
downside censorship), the long-run chance of adoption under
L increases. Intuitively, upside salience breeds overoptimism,
reducing rejection probability.

We can show several other simple conclusions (see SI
Appendix, section 5 for derivations). High upside payoff, V , and
high probability of the H state, q , both promote long-run adop-
tion. These facts have opposite implications about the effects of
moonshotness, which is, by definition, associated with both high
V and low q . For state H , as the upside reward V of the project
increases, or the prior likelihood of state H increases, the prob-
ability of long-run adoption increases. Likewise, for state L, so
long as biased censorship is strong enough that there is no cer-
tainty of eventual rejection, the probability of eventual rejection
is increasing in chance of failure p, decreasing in upside payoff
V , and decreasing in q .

Higher p promotes rejection because payoffs become more
accurate indicators of the actual state, L. Agents also under-
stand that payoffs are more accurate, and therefore update
more strongly to payoff outcomes. This increases the sizes of up

Hirshleifer and Plotkin
Moonshots, investment booms, and selection bias in the transmission of cultural traits

PNAS | 5 of 9
https://doi.org/10.1073/pnas.2015571118

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015571118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015571118/-/DCSupplemental
https://doi.org/10.1073/pnas.2015571118


and down moves in the LLR random walk, reducing the mean
number of steps required to reach the absorbing barrier. This
effect also promotes rejection in the long run. Some less obvi-
ous comparative statics, including those pertaining to interactive
effects of parameters obtained from mixed partial derivatives,
are derived and discussed in more depth in SI Appendix, section
5. These effects provide a rich set of further potentially testable
empirical implications.

Proposition 3. In both states θ=H ,L, where for state L, we
require parameter values such that RL< 1, we have the follow-
ing comparative statics: ∂R

θ

∂β
, ∂R

θ

∂δ
< 0 and ∂Rθ

∂π
< 0; ∂R

θ

∂V
, ∂R

θ

∂q
< 0.

Furthermore, in state L, for parameter values such that RL< 1, we
have: ∂R

L

∂p
> 0; ∂2RL

∂β∂V
, ∂

2RL

∂δ∂V
< 0 and ∂2RL

∂π∂V
> 0; ∂

2RL

∂β∂q
> 0.

To understand the cross-partials, recall that rejection occurs
when the random walk d ′k (the net count of up versus down
steps observed by agent Ik ) hits the lower boundary d∗< 0.
Increasing the upside payoff V decreases d∗, making even-
tual rejection less likely (∂RL/∂V < 0). Increasing π (reducing
censorship) increases the chance of a downward step, making
rejection more likely (∂RL/∂π > 0). However, if V is already
very large, the chance of ever reaching the lower boundary d∗�
0 is almost zero, and so the marginal effect of an increase in π is
small. So the cross-partial on RL is positive. A similar intuition
applies with opposite sign for the cross-partials with respect to
β or δ.

Moonshots, Sure Bets, and Upside Salience. A moonshot is a project
that has low probability of success, as reflected in the probability
of the H state, q , and a high upside payoff V . This is the opposite
of a sure bet project, which has high q and low V . The key psy-
chological premise of our analysis of moonshotness is that upside
salience β is greater for moonshots than for sure bets. Both a low
ex ante probability of success and a high conditional payoff make
success more surprising and newsworthy.

As stated in Proposition 3, long-run adoption is more likely
when upside salience β is larger. So the model offers the empir-
ical implication that moonshots will tend to be adopted more
heavily than sure bet projects, even after controlling for net
expected value.

Moonshotness can only be varied by varying q and V , each
of which affects rejection probability. To provide a sharp assess-
ment of the effects of moonshotness on rejection probability via
its effect on upside salience β, we control for the direct effects
of q and V by considering excess rejection probabilities in the
two states.

As before, we assume that β > 1 and, for the analysis of state L,
focus on the case in which β > p/(1− p), so that eventual rejec-
tion is not assured. Specifically, for two possible values of upside
salience, β and β (where both satisfy the relevant inequality
above), let the excess log reject probability relative to benchmark
β in state H or L be defined as

eH (β,β)≡−RH ,β

RH ,β
=− log

(
1− p

βp

)/
log

(
1− p

βp

)
eL(β,β)≡−RL,β

RL,β
=− log

(
p

β(1− p)

)/
log

(
p

β(1− p)

)
,

[11]

where Rθ,β and Rθ,β are the values of Rθ for two given values
of β, and where the algebraic expressions follow from Eq. 9. The
excess log reject probability captures the idea that, for any given
values of q , V , and p, greater upside salience biases agents away
from rejecting. So these expressions are decreasing with upside

salience, β.§ Notably, these are exact expressions, and they are
independent of q and V .

To understand the effect of moonshotness in more depth, con-
sider the probability of eventual rejection when varying V and
q inversely, while holding constant the prior expected payoff,
v ≡E(v). As argued above, an increase in moonshotness, cap-
tured here by an increase in V , increases upside salience β. Since
the expressions in Eq. 11 have no direct dependence upon V and
q , varying moonshotness affects these expressions only through
its effect on upside salience β.

Specifically, differentiating Eq. 11 with respect to β yields

∂eH (β,β)

∂β
=

1

β log
(

1−p

βp

)< 0

∂eL(β,β)

∂β
=

1

β log
(

p

β(1−p)

)< 0. [12]

So greater upside salience β decreases the excess rejection
probability. By increasing upside salience, an increase in moon-
shotness decreases excess rejection, meaning it decreases rejec-
tion after controlling for the direct effects of V and q (apart
from there indirect effect via beta β). Intuitively, moonshotness
biases observation toward past successes rather than failures,
which promotes adoption. In SI Appendix, section 6, we dis-
cuss in greater detail the conceptual experiment underlying the
comparative statics on excess log reject probabilities.

Salience and Firm Size. The noncensorship parameter π in the
model is a proxy for the salience of downside outcomes and δ for
the salience of upside outcomes, where we have defined β= δ/π
as the relative attention to the upside payoff (upside salience).
Greater overall attention by media and observers will tend to
increase both π and δ, with potentially offsetting effects on β.

However, at least in the limit, higher attention tends to reduce
β. For example, other things equal, large firms tend to receive
much greater attention than small firms (24). In the limit, if a
well-known firm such as Ford receives high attention to both
its successes and failures, π= δ≈ 1, so β≈ 1, i.e., there is no
upside salience. In other words, for a large firm, failure of a major
project can be notable enough to be reported upon in the media.
In contrast, small start-ups often fail unnoticed. What is mainly
reported in the media are extraordinary successes that start in
garages and become tech giants. So, other things equal, β will be
higher for small firms than for large firms. The model therefore
implies that the bias in favor of adopting risky projects will be
especially strong for small start-ups. A further implication is that
moonshots that are initiated with great fanfare and heavy invest-
ment may not generate as much mythology and overestimation
as stories about firms that started in a garage.

If the effects of the model are stronger for small start-ups,
then naive observers will strongly overestimate the probability
of such start-ups succeeding, resulting in active and impetu-
ous entrepreneurial activity. There is survey evidence that
entrepreneurs are highly overoptimistic about their likely suc-
cess (25). Our model suggests that there will tend to be much
less overoptimism about the innovative projects of large firms,
and therefore less frequent undertaking of such projects.

Identifying Sources of Cultural Evolution using the Price
Equation
Our model is an evolutionary system, in which later agents
stochastically inherit the trait of adopt versus reject from earlier

§Since the benchmark denominator expression Rθ,β < 0, a negative sign is needed to
ensure that higher eθ (β, β) is indicative of higher reject probability.
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agents. If we designate some set of earlier agents as ancestral,
and some set of later agents as descendant, then we can glean
insight into the drivers of cultural evolution using the Price Equa-
tion (26). The Price Equation decomposes evolutionary change
into selection and nonselection effects. The nonselection com-
ponent is often called mutation pressure—the degree to which
traits shift through the inheritance process instead of fitness-
biased biased replication. The standard Price Equation applies
to realizations; we take expectations to employ it in ex ante form.

Most studies on cultural evolution focus on trait change driven
by the cultural analogue of natural selection: namely, biased
imitation of traits that produce high payoff. Under biased imi-
tation, some traits are more likely to be imitated than other
traits. In the large field of evolutionary game theory, for exam-
ple, biased imitation of high-payoff traits is often the only force
considered (27).

However, the Price Equation highlights that evolutionary
change in general also derives from mutation pressure—the ten-
dency for traits to be systematically modified in the process of
being transmitted from an ancestor to a descendant, irrespec-
tive of ancestor fitness. We therefore use the Price Equation to
explore the roles of selection versus mutation pressure on the
evolution of the financial trait of adopting versus rejecting an
investment project. As we will see, the conclusions are somewhat
surprising.

The Ex Ante Price Equation. The insights provided by the Price
Equation depend on how key categories are defined: ancestors,
descendants, inheritance, and traits. We view inheritance in our
setting as a potential causal dependence of the adopt/reject trait
among descendants on the traits of ancestors. Under this inter-
pretation, there is no inheritance from a censored agent, because
later agents derive no information from such an agent.

With our definition of inheritance in mind, we now apply a
stochastic version of the Price Equation. Let the ancestral gen-
eration be denoted a and the descendant generation d . Let q i

be the frequency of type i in the a population, where i = 0
indicates reject and i = 1 indicates adopt. Let q ′i be the fre-
quency of type i in the d population. We use overlines to denote
expected frequencies, so let q ′i ≡E [q ′i ]. In a realization where
type i = 0 has zero frequency in a , fitness is undefined. We there-
fore use a form of the Price Equation emphasized by ref. 28
that contains ancestral and descendant frequencies instead of
fitnesses.

Letting z i denote the trait value of ancestral agent i , the aver-
age trait values in the a and d populations are ẑ ≡

∑
q iz i , ẑ ′≡∑

q ′iz ′i . In our context, the sum is over the two alleles, adopt
and reject. We code these types with index i = 0, 1, which have
ancestral alleles z 0 = 0 and z 1 = 1, where zero indicates reject
and one indicates adopt. We study the change in trait value,
∆ẑ ≡ ẑ ′− ẑ and its conditional expectation.

Let ∆q i ≡ q ′i − q i be the frequency change due to natural
selection. Let the trait value change be ∆z i ≡ z ′i − z i . The Price
Equation decomposes average trait change into two terms

∆̂z =
∑

q ′i
(

∆z i
)

︸ ︷︷ ︸
mutationpressure

+
∑(

∆q i
)
z i︸ ︷︷ ︸

selection

, [13]

as given by ref. 28.
Consider, in state θ, a sequence of A or R realizations through

agent In . We consider this population of n agents to be the ances-
tral generation, and we analyze the change or expected change in
the average trait value to the descendant generation, In+1, which
is a population consisting of a single agent.

Under our definition of inheritance as a potential causal
dependence of traits, an ancestral agent who is censored has
no descendants. Furthermore, an agent with trait i = 0 rejects,

resulting in a deterministic payoff of zero, which is uninforma-
tive to later agents. Since reject agents have no influence on later
beliefs or actions, reject agents have no descendants. Finally, an
uncensored agent with trait i = 1 does generate information that
influences the information, and potentially the behavior, of the
descendant Ij+1. So all uncensored agents collectively share the
same, single descendant. That is, the descendant Ij+1 inherits
from all ancestral agents.¶ Since i refers to type in the above
equations, the terms reflect the aggregated inheritance derived
from all of the agents of each type.

Selection and Mutation Pressure in Project Adoption. We study the
expected evolution of traits conditional on the behaviors of early
agents. We examine two conditionings: 1) All ancestral agents
through In have adopted; or 2) not all ancestral agents adopted.
Then, we examine unconditional trait evolution in an illustrative
special case.
Case 1: All Ancestral Agents Adopted. Consider first the case, in
which, in state θ, all agents adopt through agent In . There is only
type i = 1 in the a generation, so q0 = 0 and q1 = 1. Trivially,
there can be no selection in the evolutionary sense, because the
a population has only one allele.

Furthermore, there is stochastic mutation pressure, wherein
the z i = 1 ancestors can map into a z ′i = 0 descendant. Observe
that q ′1 = 1; all agents in d are descendants of type i = 1 in
generation a .

Since it is not meaningful to study evolution when there are
no ancestors, let B denote the event that there is at least one
uncensored ancestor. Substituting into the expectation of Eq. 12
conditional upon B and on all past adopt, we obtain

∆̂z = E[z ′1− 1|z1 = · · ·= zn = 1,B]︸ ︷︷ ︸
mutationpressure

=P(z ′= 1|z1 = · · ·= zn = 1,B)− 1︸ ︷︷ ︸
mutationpressure

, [14]

where on the right-hand side, the selection term of the Price
Equation is zero. (The overline notation leaves implicit the
conditioning of the expectation.)

This application of the Price Equation (Eq. 14) reveals that,
even though there is selection bias on project payoffs that affects
the evolution of the adopt/reject trait, there is no selection in the
evolutionary sense. Selection bias induces cultural evolution by
inducing mutation pressure in the trait value between ancestors
and their descendants, rather than through selection on survival
of ancestors.

This may seem counterintuitive, since a key driver of evolution
here is that agents with low payoffs are “selected out.” How-
ever, all ancestral agents have the same trait, i = 1. There is no
variance for evolutionary selection to act upon. In contrast, cen-
sorship is based on whether the agents who adopted experienced
high versus low payoffs. That censorship decreases the tendency
for In+1 to switch to reject.

The mutation pressure that drives expected trait change in
Eq. 14 is negative, meaning that there is always a chance that
the descendant of an A agent will reject. Mutation pressure
here is caused by cognitive reasoning, as later agents assess state
based on the payoffs received by earlier agents. Notably, stronger
selection bias weakens the pressure toward R. Moreover, the
form of mutation pressure here differs from mutation pressure
in genetic settings, in that its strength depends on the number

¶This is consistent with versions of the Price Equation in which a descendant can have
multiple ancestors. In the biological context, the number of ancestors is usually one
or two for asexual or sexual reproduction, but in cultural contexts, an agent can have
many influencers.
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of (uncensored) type-A agents in the ancestral generation. In
genetic inheritance, a mutation bias has a fixed strength, and
it applies to a single parent–offspring replication event. In our
context, all of the uncensored type-A ancestors are collectively
the causal parents of a single offspring. Furthermore, the greater
their number, the greater the chance the offspring will convert to
type R.
Case 2: A Past Reject Has Occurred. We now consider trait evolu-
tion conditional on at least one past reject. There is also at least
one past adopt, since I1 always adopts. Since the a generation
has a mixture of adopt and reject alleles, there may be selection
in the evolutionary sense.

Since there has been a past reject, all subsequent agents reject,
so in the d generation, agent In+1 always rejects. In fact, with
no additional complexity, we now generalize trivially so that the
d generation includes any number of agents In+1, In+2, and
so forth.

Since a reject does not generate informative payoffs, and
therefore has no causal effect on later agents, the reject type
(i = 0) has no cultural descendants. In contrast, when an a agent
adopts and is not censored, payoff information is transmitted
to descendants and can influence behavior. Collectively, a suf-
ficiently high number of low payoffs derived from uncensored
past adopts causes the d agent(s) to reject. So, as before, each
agent in the d generation descends from all of the agents of type
i = 1, and only type i = 1 has descendants. So by definition, the
descendant frequencies are q ′0 = 0, q ′1 = 1.

Since, under Case 2 conditioning, the descendants of type
z 1 = 1 always reject, we have z ′1 = 0. In other words, trait i = 1
has perfect negative heritability. This is reflected in the mutation
pressure component of the Price Equation. Substituting these
values into the expectation of the Price Equation, Eq. 12, con-
ditional on at least one past reject and at least one uncensored
adopt, gives

∆̂z = −1︸︷︷︸
mutationpressure

+ 1− q1︸ ︷︷ ︸
selection

. [15]

(The overline notation leaves implicit the conditioning of the
expectation.)

The initial mean value of z i in a is q0(0) + (1− q0)1 = 1− q0.
The initial a mean and the change in mean are negatives of each
other, which reflects the fact that all descendants reject (mean
trait value of zero).

The decomposition shows that evolution toward the reject
allele derives from the opposition of two strong effects: evolu-
tionary selection and mutation pressure. There is strong selection
for A, since only A types leave descendants. However, this is
overwhelmed by even stronger mutation pressure toward R.
Specifically, evolutionary selection results in no descendants of
the i = 0 type, yielding a positive selection term. But mutation
pressure in the descendants of the i = 1 type is overwhelming; all
of them shift from z 1 = 1 to z ′1 = 0. This generates the −1 term.
So the R allele becomes fixed in the d generation.

The mutation pressure in this setting is more extreme than in
the previous case (Eq. 14), because this setting is deterministic:
The descendent generation definitively rejects, and the rejection
assuredly arose by mutation from an ancestor who had adopted.
Case 3: Without Conditioning on Whether Past Rejects. In SI
Appendix, section 7, part D, we also perform a Price Equation
decomposition in a case with minimal conditioning—only on the
presence of at least one uncensored ancestor. This allows for the
cases of All Past Adopt (Case 1) or Some Past Reject (Case 2)
as possible realizations. The insights from Cases 1 and 2 carry
through to this minimal-conditioning case. There is still opposi-
tion between the effects of selection and mutation pressure, with
selection favoring adopt and mutation pressure favoring reject.

Taken together, the three applications of the Price Equa-
tion above provide a notable contrast between cultural and
genetic evolution. Moreover, evolution in our context also dif-
fers from trait dynamics in other behavioral settings, such as in
evolutionary game theory, where inheritance is determined by
direct copying (27). Accurate copying leads only to selection,
i.e., differential reproduction of traits. In contrast, agents here
process information thoughtfully, which enriches the causality of
trait transmission. Information transmission from parent to off-
spring results in mutation pressure, which can even overwhelm
selection.

This application of the Price Equation offers two lessons. The
first is that the Price Equation decomposition can apply to many
social economic models, so long as some agents are influenced
by other agents and a causal linkage between actions is used to
specify inheritance.

The second lesson is that mutation pressure is just as impor-
tant as selection in the cultural transmission process. In evolu-
tionary economics and other applications, cultural transmission
is often presented as simply a matter of differential survival
of traits that compete to be copied. This is indeed part of the
evolutionary process, even in settings with complex strategic
interactions. However, as we have seen, there is also often sys-
tematic, endogenous mutation pressure arising from cognition.
Such pressure can operate even when there is no selection, and
it can overwhelm selection when the two forces are opposed.

Discussion
Biased information about others can profoundly influence the
dynamics of investment risk taking, which we have studied as a
cultural trait transmitted among firms. We have shown that when
low-payoff outcomes are censored with higher probability than
high-payoff outcomes, firms that do not account for this censor-
ship bias become overly optimistic and undertake projects too
often. This causes booms of overadoption, followed either by an
eventual bust or by permanent long-run adoption, even in a state
where complete information would assuredly lead to (rational)
rejection of a risky project.

These dynamics are a form of cultural evolution in which
parentage reflects causality. This is a richer form of cultural evo-
lution than simple copying of successful traits, because it allows
for cognitive reasoning about which traits are more likely to yield
high payoff based on (biased) observations of prior outcomes.

Even for given size of project, some types of firms (such as
large firms) tend to receive more attention than others (e.g.,
greater coverage by financial and media analysts). Since atten-
tion probabilities are bounded above by one, the upside salience
of high-profile firms is necessarily limited; even their failures are
noticed.

Specifically, when attention is high, censorship of low out-
comes is less likely, which reduces overadoption. For example,
if a huge moonshot initiative by a large, established firm (e.g.,
self-driving cars) were to fail, this could be as conspicuous as a
success. So the model implies that overadoption will be more
pronounced among start-ups and small firms than among large
established enterprises. The extreme difference in visibility of
success versus failure among start-ups provides an explanation
for the overoptimistic expectations of entrepreneurs, and for the
empirical anomaly of low returns to private equity (29).

Some firms receive higher attention for reasons other than
sheer size. For example, as a creator of innovative consumer
products, Apple has long been a magnet for attention, starting
even before it became a giant. Firms in consumer-product busi-
nesses tend to attract greater attention than infrastructure firms.
A failure of a project by a firm in a high-attention sector may be
more salient than failure in a sector that receives little attention.

When a firm’s decision making is influenced by observations
of other firms, adopting or rejecting a project is a cultural trait
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transmitted with bias between firms. We use the Price Equa-
tion to decompose such transmission into a selection component
and a mutation component. Notably, although misperceptions
of managers are driven by selection bias in what they observe,
the Price Equation reveals that behavioral evolution is driven by
the opposing effects of mutation pressure and evolutionary selec-
tion, and that in some conditions, there is only mutation pressure,
without evolutionary selection. This contrasts sharply with a large
domain of cultural evolutionary models with accurate copying, in
which there is only selection.

The result of excessive adoption in our model is relative to
a rational firm-level optimum. However, there are, in general,
positive externalities to research and innovation. So excessive
adoption that is unprofitable at the firm level may be welfare
increasing at the social level. Innovative and moonshot projects
may generate especially high externalities. On the other hand,
there are also undesirable innovations, such as patent trolling
and the use of hijacked airplanes as weapons.

We assume upside salience: that the probability that a high
payoff is observed by others be greater than the probability that
a low payoff is observed, but less than one. We expect moonshots
to have high upside salience, because a rare, very high payoff
is especially noticeable. In consequence, the model implies that
overadoption will be more severe for moonshot projects. We also
expect “sexy” projects (project that are innovative, fun, and excit-
ing, such as self-driving cars) to have high upside salience. For
given upside cash flow, we expect upside outcomes to be reported
and remembered especially often when people feel the innova-
tion has changed how people live in exciting ways. Therefore,
there may be a tendency to overinvest in such sexy projects.

We have shown that upside salience causes managers
to overvalue moonshot projects, resulting in overadoption
and boom/bust patterns. For similar reasons, security-market
investors may overvalue “lottery stocks” (stocks with posi-
tive skewness), consistent with evidence from stock returns, as
summarized in ref. 7.

Our main focus has been investment at the firm level, but
our approach can also be applied at larger scales to explain
industry-level or aggregate-level investment boom/bust patterns.
Industries may differ in upside salience of payoff outcomes, in
part owing to differences in average firm size. So our model sug-
gests that boom/bust patterns can be much more pronounced in
some industries than in others. This is an interesting direction for
empirical testing.

Stepping beyond the model somewhat, our approach also
has organizational implications, including an advantage to man-
agers of recruiting team members who are less heavily cen-
sored in observing others. Examples would include directors
and venture capitalists who have broader direct experience,
rather than observation through the media, than the manager or
entrepreneur in past projects, especially for small start-ups.

Data Availability. All study data are included in the article and/or SI
Appendix.
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